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Abstract

This paper studies the discovery of communities from so-
cial network documents produced over time, addressing the
discovery of temporal trends in community memberships. We
first formulate static community discovery at a single time
period as a tripartite graph partitioning problem. Then we
propose to discover the temporal communities by threading
the statically derived communities in different time periods
using a new constrained partitioning algorithm, which par-
titions graphs based on topology as well as prior informa-
tion regarding vertex membership. We evaluate the proposed
approach on synthetic datasets and a real-world dataset pre-
pared from the CiteSeer.

1 Introduction

Social network analysis (SNA) is an established field in
sociology recently becoming popular for computer scientists,
which is motivated in part by the increasing amount of per-
sonal and social information available online. Community
discovery is a classical problem in social network analy-
sis, where the goal is to discover related groups of social
actors such that they are intra-group close and inter-group
loose. Well known graph-theoretic methods include spec-
tral graph partitioning [2], and clusteringbased on random
walks [5]. Spectral graph partitioning is a classical spec-
tral method based on the Laplacian of the graph adjacency
matrix [2], with a characteristic focus on the design of cost
functions for partitioning graphs. Random walk-based clus-
tering described in [5] applies random walks to the graphs
iteratively such that the edge weight between two vertices
is modified based on the probabilities that the random walk
revisits one of the vertices through the other.

Despite the wide range of choices for partitioning ho-
mogeneous networks, research on discovering communities
from heterogeneous social networks is rather limited Treat-
ing heterogeneous graphs the same as homogeneous ones
leads to difficulty in normalization since different edge types

may be incomparable [3]. However, observations of real-
world networks often indicate diverse network structures,
many of which can be modeled as heterogeneous networks
of social actors and the other node types such as documents
(e.g. emails, blogs, collaborative publications) or social
events. In this paper, we are particularly interested in com-
munication documents as these data sources represent the
most widely available sources of information regarding so-
cial networks.

Discovering communities from documents is a recent
trend. Popular approaches are either content-based or graph-
theoretic. One popular content-based approach is to mine
information via probabilistic generative modeling, where the
social actors or communities are considered as variables in
the generation of document content [6, 8]. Alternatively, a
graph-theoretic approach can consider the documents as an
additional set of vertices connected to authors in a bipar-
tite [7] or tripartite [3] graph structure. These methods, how-
ever, work with only a static snapshot of network data. The
issues of document time and the temporal community devel-
opment are generally overlooked.

This paper addresses the community discovery problem
in a temporal heterogeneous social network consisting of au-
thors, document content, and the venues in which the doc-
uments are published, all observed over time. We propose
a new framework that addresses the two main challenges in
this new problem: (a) handling of the heterogenous network
and (b) incorporation of the temporal aspect of the data. For
(a), we formulate community discovery in a heterogeneous
social network (the social network is a network of authors,
words, and publication venues) as a tripartite graph partition-
ing problem. A normalized cut (NCut) cost function is de-
fined over the partitions. We show that partitioning a tripar-
tite graph is a quadratically constrained quadratic program-
ming (QCQP) problem. For (b), we introduce a new method
for incorporating prior knowledge, such as prior community
membership, into the current discovery process. The discov-
ery of temporal communities is then performed by threading
communities discovered at consecutive time periods using
the output from the previous period as prior knowledge. At
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each time period, the constrained graph partitioning method
is able to capture both the current graph topology and histori-
cal information regarding the vertex membership. This prob-
lem is efficiently solved using a proposed fractional orthog-
onal iteration algorithm (instead of pursuing the semidefi-
nite program (SDP) as in [3], which is computationally in-
tractable). We evaluate the proposed approach on synthetic
datasets with various settings in order to explore the proper-
ties of the new algorithm. A great improvement in clustering
precision is observed. In addition, we show the results of
applying this method to a sample dataset obtained from Cite-
Seer (http://citeseer.ist.psu.edu).

2 Problem Statement
This paper considers social networks of researchers in the

context of their collaborations on published work. The data
in focus includes the co-occurrences of authors with docu-
ments, documents with words, and documents with venues.
All data are associated with time stamps, which are the years
of publication. The data is collapsed on documents yield-
ing the (1) author-word co-occurrences and (2) word-venue
co-occurrences, over a certain amount of time. Thus, within
each time period there are two correlated bipartite graphs,
one associating the authors with the words, and the other as-
sociating the words with the venues, which share the same set
of vertices of words. We refer to them as a bipartite graph
couple, which can be seen as a generalized social network of
authors, words, and documents. Fig. 2 illustrates two com-
munities in such a social network.

Figure 1. A static social network. Triangles denote
the authors, circles denote the words, and rectangles
denote the venues. Two static communities are sepa-
rated by the dashed line.

Over the entire time period, the underlying social network
structure is dynamic. Accordingly, instead of observing a
single static social network over the entire data set, a se-
quence of static social networks of various structures is gen-

t1 t2 t3

Figure 2. A dynamic social network. Three snap-
shots are included in the network with various numbers
of authors (denoted by triangles), venues (denoted by
rectangles), and words (denoted by circles).

erated, with consecutive snapshots showing significant over-
lap of entities. A dynamic social network is illustrated in
Fig. 2. Three snapshots are included, each having different
network structures. It can be seen that each static social net-
work is a bipartite graph couple. The goal of this paper is to
cluster authors, words and venues given their changing rela-
tionships over time. The desired number of communities k
is assumed and given as a parameter.

3 Community Partitioning

We start from the discovery of static communities from a
static social network. Suppose there are two bipartite graphs,
GXY = G(VX , VY , WXY ) and GY Z = G(VY , VZ , WY Z),
where VX is the author set, VY is the word set, and VZ is
the venue set; WXY ∈ R

+nX×nY is the adjacency matrix of
graph GXY and WY Z ∈ R

+nY ×nZ is the adjacency matrix
of graph GY Z ; nX , nY , nZ are the size of VX , VY , VZ .

Now define several indicator matrices: X̂ = [X1, ..., Xk],
where Xi is an indicator vector of whether the correspond-
ing element belongs to community i, with 1 indicating so
or 0 otherwise. Similarly, we have Ŷ = [Y1, ..., Yk] and
Ẑ = [Z1, ..., Zk]. Given k as the desired number of commu-
nities, the cost function of Normalized Cut (NC) on a single
bipartite graph is defined as [7]:

J2 = k −
k∑

i=1

X̂T
i D

− 1
2

XY WXY D
− 1

2
Y X Ŷi. (1)

where DXY and DY Z are diagonal matrices where the ele-
ments are the sums of rows in WXY and WY Z . Meanwhile,
in order to obtain a solution efficiently, prior work [7] made
two more assumptions on the minimizers: (1) X̂ , Ŷ take real
values instead of the discrete set {0, 1}; (2) X̂ , Ŷ are or-
thonormal, i.e. X̂T X̂ = I, Ŷ T Ŷ = I, I is an identity matrix.

Now we generalize the cost function for a bipartite graph
couple, where we have an additional set of vertices VZ and
the edge weights with VY in WY Z .Let JXY be the cost func-
tion for GXY and JY Z for GY Z . We introduce a parameter
λ to balance the costs on both graphs. Based on Eq. 1, we
arrive at a new maximization problem using the new cost
function J3 = λJXY + (1 − λ)JY Z :

min
X̂,Ŷ ,Ẑ

J3 = min
X̂,Ŷ ,Ẑ

(λJXY + (1 − λ)JY Z)

≡ max
X̂,Ŷ ,Ẑ

λ

k∑
i=1

X̂T
i D

− 1
2

XY WXY D
− 1

2
Y X Ŷi

+(1 − λ)
k∑

i=1

Ŷ T
i D

− 1
2

Y Z WY ZD
− 1

2
ZY Ẑi (2)

where we again assume that X̂ , Ŷ , Ẑ are orthonormal, i.e.
X̂T X̂ = I, Ŷ T Ŷ = I, ẐT Ẑ = I.

Now let us rewrite the problem in matrix form. Define

ŴXY = D
− 1

2
XY WXY D

− 1
2

Y X and ŴY Z = D
− 1

2
Y ZWY ZD

− 1
2

ZY .
Define U = [U1, ..., Uk], where Ui = [X̂T

i , Ŷ T
i , ẐT

i ]T ; Let
there be a matrix M such that:

2



M =




0 λŴXY 0

λŴ T
XY 0 (1 − λ)ŴY Z

0 (1 − λ)Ŵ T
Y Z 0


 . (3)

Thus, we minimize the matrix trace: maxU tr(UT MU),
where U = [X̂T , Ŷ T , ẐT ]T . Note there are orthonormal
constraints on the segments of U (i.e. X̂, Ŷ , Ẑ).

4 Partitioning Temporal Graphs
Next, we present a constrained graph partitioning method

that threads community discovery across consecutive time
periods, based on the graph partitioning formulated above.

Graphs with consistent vertices: We first focus on the
case where graphs have consistent vertices. For each time
period, we have M t and U t, where t = 1, ..., T are the
time stamps and U t contains the community membership of
authors, words, and venues. Assume that the graphs have
consistent vertices; thus, all U t have the same dimensions.
We define a cost function on the difference between two
consecutive U ’s and seek to minimize such difference to
achieve “smoothness” in discovery. In particular, we want to
minUt c(U t−1, U t) (We refer to U t−1 as the reference sub-
space). In this paper, equivalently, we maximize the square
of cosine distances between the U t and U t−1. Suppose Ẋ ,
Ẏ , and Ż are the reference subspaces for X , Y , Z . We seek
to maximize the following:

= tr(UT U̇U̇T U) (4)

= α.tr(X̂T ẊẊT X̂) + β.tr(Ŷ T Ẏ Ẏ T Ŷ ) + γ.tr(ẐT ŻŻT Ẑ) (5)

= α‖ẊT X̂‖2 + β‖Ẏ T Ŷ ‖2 + γ‖ŻT Ẑ‖2, (6)

where U̇ = [
√

αẊT ,
√

βẎ T ,
√

γŻT ]T , α, β and γ are the
weight parameters of the membership differences in authors,
words, and venues. Notice that U̇U̇T is essentially the co-
variance matrix between the vertices in the reference. Since
we have assumed consistent vertices in the graphs across dif-
ferent time periods, we essentially minimize the conflicts be-
tween the discovered U and the referenced covariance.

Graphs with evolving vertices: Now we generalize the
previous section to graphs with evolving vertices. In practice,
some vertices may disappear and other new ones may show
up, thus the U̇ obtained from previous period can disagree
with the dimensionality of the U in the current time period.
We introduce an additional step to adapt U̇ to address this
issue.

First, for vertices disappearing from previous time period,
since each vertex corresponds to a row in U̇ , we delete these
rows from U̇ , forming a matrix with the same number of
columns but a smaller number of rows, U̇ ′, namely, in the
first step shrink():

U̇ ′ = shrink(U̇) = [Ẋ ′T , Ẏ ′T , Ż′T ]T . (7)

Second, for those new vertices, with no prior knowledge
regarding their membership, we require zero co-variances
between them and others, resulting in zeros in the corre-
sponding rows. Name this second step expand():

U̇ ′′ = expand(U̇ ′) = [Ẋ ′T , 0, Ẏ ′T , 0, Ż′T , 0]T , (8)

where [Ẋ ′T , 0]T , [Ẏ ′T , 0]T , and [Ż ′T , 0]T respectively cor-
respond to the newly observed Xt, Y t, and Y t; all 0′s has
the appropriate number of rows and k columns.

The two additional steps give raise to the new reference
covariance matrix, say Ċ = U̇ ′′U̇ ′′T . Incorporate Ċ into the
original optimization. We arrive at the final formulation of
the community discovery problem at each time period:

max
U

tr(UT MU) + tr(UT ĊU)

= max
U

tr(UT (M + Ċ)U) (9)

subject to

U = [X̂T , Ŷ T , ẐT ]T andX̂T , Ŷ T , ẐT are orthonormal. (10)

where M, Ċ are dependent on the parameters λ, α, β, γ, as
given in the above.

4.1 Efficient approximate solutions

This section gives an efficient algorithm to solve Eq. 9.
It can be seen that Eq. 9-Eq. 10 is quadratically constrained
quadratic programming (QCQP) problem, which could have
a standard solution by semidefinite programming (SDP) [1].
For example, a related work [3] studied the binary clus-
tering case and proposed an approximate solution using an
interior-point method. However, we note that our optimizer
here is a matrix (U = [XT , Y T , ZT ]T ). One might con-
struct a very high-dimensional vector by columns of U and
translate the problem into SDP, but difficulty arises from
the exploding dimensionality of the problem. Recall that
U ∈ R

(nX+nY +nZ)×k, where nX , nY , and nZ are the num-
bers of authors, words, and venues. The translated SDP prob-
lem will have a k(nX +nY +nZ)-dimensional vector as the
minimizer (with a k(nX + nY + nZ) × k(nX + nY + nZ)
semidefinite matrix of constraints), which can easily surpass
the capacity of most SDP solvers.

Instead, we propose an efficient algorithm that searches
for approximate solutions, based on algorithms for eigenvec-
tors. First we are aware that the Eq. 9, with orthonormal
constraint on U , reaches the maximum when U contains the
first k eigenvectors of the symmetric matrix A = M + U̇ U̇T .
This is a standard result from matrix theory [4]. Second, we
seek to preserve the constraints as much as possible while
performing the optimization. We modify the orthogonal iter-
ation method which is used to calculate the eigenvector space
without constraints, arriving at a new method fractional or-
thogonal iteration, presented in Algo. 1.

Here eig(A, k) calculates the k-dimensional eigenvector
space of A without constraints. This is the initial value for
the subsequent orthogonal iteration. In the algorithm, step 9
- step 11 produce the normalized X̂ , Ŷ and Ẑ as specified in
the constraints. Step 8 performs the power iteration as in the
original orthogonal iteration method for calculating eigen-
vectors. Up to step 15, the algorithm has projected the origi-
nal bipartite graph couple into an approximate k-dimensional
eigenspace. Then we run k-means to cluster the heteroge-
neous objects as current communities.
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Algorithm 1 fractional orthogonal iteration
1: U̇ = [

√
αẊT ,

√
βẎ T ,

√
γŻT ]T ;

2: U̇ ′ ← shrink(U̇) as in Eq. 7
3: U̇ ′′ ← expend(U̇ ′) as in Eq. 8

4: Ċ ← U̇ ′′U̇ ′′T

5: A = M + Ċ
6: [U, D]← eig(A, k)
7: for i = 1, 2, 3, ... do

8:


 X̂

Ŷ

Ẑ


 ← A× U

9: QXRX ← X̂ // QR factorization
10: QY RY ← Ŷ // QR factorization
11: QZRZ ← Ẑ // QR factorization

12: U ←

 QX

QY

QZ




13: end for
14: U ←M × U
15: run k-means on U to obtain the desired partitioning, where each row in U denotes

the original data object of the same index.

5 Experiments

A synthetic data generator was created to test the pro-
posed method in various conditions, including different edge
density-to-noise ratio, various proportions of X/Y/Z , dif-
ferent settings of λ, and different numbers of clusters (k).
Two connected graphs GXY and GY Z are generated for the
prescribed K and sizes of X , Y , and Z . All clusters con-
tain the same number of entities with specified proportions of
X, Y, andZ . The densities of all the clusters are the same, but
the edge weights vary randomly. Random noise is added to
the graph and density is determined by the given noise-signal
ratio parameter (nsr). Setting nsr = 1 yields a random
graph without cluster structures. Presumably, the commu-
nity structures in the graph XY diminish as the noise-signal
ratio (nsr) grows. Low nsr indicates that graph partitioning
will be easier. The table below includes a complete list of
parameters and their meanings.

abbr. usages
fsi fractional subspace iteration
par partitioning static graphs using fsi

t-par partitioning temporal graphs using fsi
k number of clusters

density the edge density of the graph clusters
nsr noise-signal ratio, noise density / cluster density
x/z the size of X / the size of Z
λ the weight parameter in Eq. 3

5.1 Precision w.r.t. graph conditions

We perform fsi on different settings of x/z ratios for a
fixed setting of λ. In real world datasets, the sizes X and
Z are usually not balanced. We compare fsi with subspace
iteration for imbalanced data against fsi by varying the x/z
ratio. Fig. 3 shows different settings of x/z for different den-
sities. Recall that a large x/z indicates that the size of X is
much greater than that of Z . Without loss of generality, we
assume x/z ≥ 1. We can see that for sparse graphs (small
density) the fsi outperforms subspace iteration greatly (il-
lustrated in the subfigure on the bottom). In simple cases
(large density), the fsi generally outperforms subspace iter-
ation for small x/z; however, fsi under-performs subspace
iteration slightly for small x/z on dense graphs. Note that

real-world graphs are usually very sparse; thus, fsi could be
favored on many real-world datasets.

5.2 Precision w.r.t. parameter settings

Here we test different settings of parameters and their im-
pact on community discovery precision. A set of experiments
were run with different settings of λ in different x/z ratios.
The results illustrated in Fig. 4 show that the favorable λ are
different when x/z varies. When the X outnumbers Z by a
large margin, a greater value in λ is favored; similarly, small
λ performs better when there are few X entities compared
with Z . This suggests that graphs with more edges deserve a
larger weight in the cost evaluation.

Finally, we compare fsi with subspace iteration on dif-
ferent numbers of clusters, at different subspace iteration.
We can see that, for large density, fsi still outperforms sub-
space iteration for large numbers of clusters. However, the
subspace iteration seems to work better than fsi for the case
of many clusters on sparse graphs. In practice, we can sub-
stitute fsi by recursively performing k-means using k = 2
for bi-partitioning the graph, similar to [7].

2 4 6 8 10 12 14 16 18 20
0.9

0.95

1

2 4 6 8 10 12 14 16 18 20
0.98

0.99

2 4 6 8 10 12 14 16 18 20
0.98

0.99

1

precision w.r.t. x/z ratio

de
ns

ity
=

0.
1

de
ns

ity
=

0.
3

de
ns

ity
=

0.
5

Figure 3. The precision w.r.t. different x/z ratio,
at different edge density levels. Here nsr =
0.1, k = 2, λ = 0.5.
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Figure 4. The precision w.r.t. λ, at different x/z
ratio. Here density = 0.3, nsr = 0.3, k = 2.
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Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04

JMLR
M I Jordan M I Jordan W L Johnson S Thrun D Koller A Blum

L P Kaelbling L P Kaelbling N Friedman C Boutilier A W Moore S Thrun
J Y Halpern Z Ghahramani D Koller T Sandholm M I Jordan S Zilberstein

PAMI
S P Singh S P Singh R E Schapire D Koller M L Littman P Stone

Z Ghahramani M K Warmuth Y Singer N Friedman S Thrun J Langford
M K Warmuth T G Dietterich R Dechter Y Singer D Schuurmans T Eiter

ICML
T G Dietterich T Dean T J Sejnowski A Mccallum J Shawe-taylor P Domingos

T Dean Y Bengio H S Seung L P Kaelbling S P Singh A K Jain
Y Bengio P Smets D Poole S P Singh N Friedman S Baker

AAAI/IAAI
P Smets W Maass M I Jordan P R Cohen N Cristianini S Chawla
W Maass V Tresp N Tishby R Khardon A Mccallum R Dechter
V Tresp D Weinshall R Greiner M J Kearns P Domingos C Guestrin

UAI
D Weinshall D Geiger Y Mansour K Nigam Y Bengio C Boutilier

D Geiger S Kambhampati M K Warmuth N Cristianini D Freitag M J Kearns
D Poole A Saffiotti Y Freund J Shawe-taylor A Y Ng T Lukasiewicz

IJCAI
R E Schapire R E Schapire D P Helmbold C Baral M K Warmuth A Demiriz

S Kambhampati D S Nau C Boutilier A W Moore G E Hinton S P Singh
C Baumlckstroumlm H A Simon M L Littman D Fox N Tishby D Koller

JAIR
F Bacchus F Bacchus P Dayan D Roth A J Smola D Schuurmans
A Saffiotti D Poole A J Grove M P Wellman G Raumltsch S Prabhakar

Table 1. Machine learning community during 1969-2004 in a CiteSeer sample.
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Figure 5. The precision w.r.t. k, at differ-
ent densities: density = 0.05, density = 0.25,
density = 0.45.

5.3 Higher precision by prior knowledge

The fsi algorithm uses the discovery results from the pre-
vious time period as prior knowledge for analyzing temporal
graphs. This knowledge is then used as an additional con-
straint while discovering communities in the current time pe-
riod. We simulate a 2-period temporal graph where commu-
nities in the first time period are clearly defined and then the
community structure becomes vague in the second time pe-
riod. The community membership from the first time period
is used as the prior knowledge in the second time period. (In
practice, we can also allow manual manipulation of entity
membership for the first time period, in order to increase the
validity of this assumption.)

methods precisions methods precisions
par on g1 0.9193 par on g12 0.8212
par on g2 0.2123 t-par on g12 0.9169

average of the above 0.5658

Table 2. Different methods on temporal graphs.

In Table 2, we illustrate the precisions of clustering on the
snapshots from each time period and the average precision. It
can be seen that the static partitioning precision is very high
on g1 (0.9193) and very low on g2 (0.2123): the average of
the two is about 0.5658. In addition, we perform cluster-
ing on the graph over the complete time periods, obtaining a
precision of 0.8212. Then we perform the constrained par-
titioning t-par on the temporal graph, yielding the precision
0.9169. The precision is much higher than performing clus-
tering periodically or on the complete graph.

5.4 Real-world dataset and experiments

A real-world data set for further experimentation was
generated by sampling documents from CiteSeer using
combined document metadata from CiteSeer, the ACM
Guide (http://portal.acm.org/guide.cfm), and the DBLP
(http://www.informatik.uni-trier.de/ ley/db) for enhanced
data accuracy and coverage. A set of venues was chosen
from five fields in computer science (software engineering,
data mining, artificial intelligence, databases, and distributed
computing), such that data from each field included at least
2000 distinct author names and at least ten years of signif-
icant coverage. All documents contained in CiteSeer from
each venue were obtained and the top 100 keyphrases were
extracted from each document using the KEA keyphrase
extraction algorithm (http://www.nzdl.org/Kea/). The final
dataset contained 12,677 authors and 45,295 keyphrases
from 30 distinct venues ranging over the years 1969 to 2004.
The total number of documents used was 13,310.

Experiments on this data set began by empirically deter-
mining the appropriate number of clusters. While it is an
open problem to determine the dimension of a subspace for
embedding a graph, we used simple heuristics. We ran the
proposed community discovery algorithm (fsi) with differ-
ent k and chose the k corresponding to the smallest J̃ (or
the greatest γ = tr(UT (M + Ċ)U)) as in Eq. 9. We ob-
served that the γ initially grows dramatically as k increases,
but grows at a much lower rate as k becomes large. Thus
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Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04

PODS

M Yannakakis M Yannakakis R Hull A Mendelson G Gottlob S Abiteboul
V Vianu V Vianu A Mendelzon J Paredaens V Vianu L Popa
A Gupta J Y Halpern Z M Zsoyoglu C Papadimitriou H Garcia-molina T Milo

Garciacute Garciacute H Garcia-molina H Garcia-molina J Widom P G Kolaitis

SIGMOD

J Widom J Widom D Suciu S Abiteboul A Y Halevy P S Yu
J F Naughton H Garcia-molina A Silberschatz D Florescu C Faloutsos F Neven

H Garcia-molina J F Naughton A Y Levy A Y Levy D Suciu C Beeri
C Faloutsos C Faloutsos L Libkin R Motwani D Gunopulos R Rastogi

VLDB

A Kemper J Hammer G Moerkotte L V S Lakshmanan S Lee J Han
K Ramamritham A Biliris S Seshadri T Milo J Han D Srivastava

G Moerkotte K Ramamritham S Abiteboul S Cluet W Fan M N Garofalakis
I S Mumick A Kemper J Widom J Han R Rastogi J Widom

SIGMOD Record

A Biliris C Baumlckstroumlm R Agrawal D Suciu C S Jensen A Y Halevy
J Hammer G Moerkotte R Ramakrishnan J S Vitter H V Jagadish C Li
M Chen I S Mumick S Sudarshan R Rastogi D Kossmann J Madhavan
P S Yu K Lin K Ramamritham G D Giacomo D Srivastava W Fan

ICDM

T Milo S Berson A Kemper C S Jensen K Chakrabarti B Babcock
D Suciu D Suciu D Florescu D Srivastava S Muthukrishnan C Y Chan
J Han D Kossmann P Atzeni O Shehory D S Weld C Koch
K Lin C A Knoblock M Benedikt M Lenzerini G D Giacomo J Gehrke

Table 3. Database community during 1969-2004 in a CiteSeer sample.

we chose the smallest k that gave the near maximum γ. This
gave us k = 4.

Then we ran the temporal community discovery (t-par) al-
gorithm with k = 4 with various settings of λ. For screening
the results, we judge the quality of discovery by examining
the grouping of venues since their number is small. We ob-
served that the quality is better for greater λ, supporting the
results from synthetic datasets that suggest λ should be set
proportionally to |X |/|Z|. Here we set λ = 0.6.

We observe that the resulting communities of authors,
venues, and words are well grouped. Four communities are
discovered for artificial intelligence and machine learning,
database and data mining, parallel and distributed comput-
ing, and software engineering. We present two discovered
communities and their authors in Table 1 and Table 3. In
our experiments, we used the discovered venue set to manu-
ally produce community labels. The keyphrases (ranked by
frequency) were considered as the summarization of a com-
munity.

Table 1 includes a subset of authors discovered in the arti-
ficial intelligence and machine learning community over six
time periods. For presentation, we rank the authors by their
number of papers within the corresponding periods. We can
observe that the community memberships of authors are rel-
atively stable but change over time. In the experiments, we
observed that the top authors remained as the “core” mem-
bers of the corresponding community and there were many
more authors who had joined and left from the communities
during these six time periods. The leftmost column shows
the top venues. Similarly, authors from the database and
data mining community are presented in Table 3.

6 Conclusion

This paper addresses an emerging problem of temporal
community discovery from communication documents, by
which one can observe the temporal trends in community
membership over time. The problem is formulated as a
tripartite graph partitioning problem with prior knowledge

available of entity covariances. Temporal communities are
discovered by threading the partitioning of graphs in differ-
ent time periods, using a new constrained partitioning algo-
rithm. Evaluation of the new algorithm is carried out on sev-
eral synthetic datasets and a real-world dataset prepared from
CiteSeer. Experiments on synthetic data reveal the properties
of the new algorithm in various graph conditions. Experi-
ments on CiteSeer data show the effectiveness of the pro-
posed approach in author community discovery. Future work
will seek to track the community membership of individuals
over time and investigate the applicability of the proposed
methods to different domains such as viral marketing or rec-
ommendation services. Additionally, temporal topical trends
will be further investigated.
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